Accepted author manuscript, 3.23 MB, PDF document
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Classifying Head Movements to Separate Head-Gaze and Head Gestures as Distinct Modes of Input
AU - Hou, Baosheng James
AU - Newn, Joshua
AU - Sidenmark, Ludwig
AU - Khan, Anam Ahmad
AU - Bækgaard, Per
AU - Gellersen, Hans
PY - 2023/3/19
Y1 - 2023/3/19
N2 - Head movement is widely used as a uniform type of input for human-computer interaction. However, there are fundamental differences between head movements coupled with gaze in support of our visual system, and head movements performed as gestural expression. Both Head-Gaze and Head Gestures are of utility for interaction but differ in their affordances. To facilitate the treatment of Head-Gaze and Head Gestures as separate types of input, we developed HeadBoost as a novel classifier, achieving high accuracy in classifying gaze-driven versus gestural head movement (F1-Score: 0.89). We demonstrate the utility of the classifier with three applications: gestural input while avoiding unintentional input by Head-Gaze; target selection with Head-Gaze while avoiding Midas Touch by head gestures; and switching of cursor control between Head-Gaze for fast positioning and Head Gesture for refinement. The classification of Head-Gaze and Head Gesture allows for seamless head-based interaction while avoiding false activation.
AB - Head movement is widely used as a uniform type of input for human-computer interaction. However, there are fundamental differences between head movements coupled with gaze in support of our visual system, and head movements performed as gestural expression. Both Head-Gaze and Head Gestures are of utility for interaction but differ in their affordances. To facilitate the treatment of Head-Gaze and Head Gestures as separate types of input, we developed HeadBoost as a novel classifier, achieving high accuracy in classifying gaze-driven versus gestural head movement (F1-Score: 0.89). We demonstrate the utility of the classifier with three applications: gestural input while avoiding unintentional input by Head-Gaze; target selection with Head-Gaze while avoiding Midas Touch by head gestures; and switching of cursor control between Head-Gaze for fast positioning and Head Gesture for refinement. The classification of Head-Gaze and Head Gesture allows for seamless head-based interaction while avoiding false activation.
U2 - 10.1145/3544548.3581201
DO - 10.1145/3544548.3581201
M3 - Conference contribution/Paper
SP - 253:1-253:14
BT - Proceedings of the 2023 CHI Conference on Human Factors in Computing
PB - ACM
CY - New York
ER -